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Abstract. Logical frameworks allow the specification of deductive sys-
tems using the same logical machinery. Linear logical frameworks have
been successfully used for the specification of a number of computa-
tional, logics and proof systems. Its success relies on the fact that formu-
las can be distinguished as linear, which behave intuitively as resources,
and unbounded, which behave intuitionistically. Commutative subexpo-
nentials enhance the expressiveness of linear logic frameworks by allow-
ing the distinction of multiple contexts. These contexts may behave as
multisets of formulas or sets of formulas. Motivated by applications in
distributed systems and in type-logical grammar, we propose a linear
logical framework containing both commutative and non-commutative
subexponentials. Non-commutative subexponentials can be used to spec-
ify contexts which behave as lists, not multisets, of formulas. In addition,
motivated by our applications in type-logical grammar, where the weak-
enening rule is disallowed, we investigate the proof theory of formulas
that can only contract, but not weaken. In fact, our contraction is non-
local. We demonstrate that under some conditions such formulas may be
treated as unbounded formulas, which behave intuitionistically.

1 Introduction

Logical frameworks [7,8,13,23,33] have been proposed to specify deductive sys-
tems, such as proof systems [7,13,24,26,33], logics [7,22] and operational seman-
tics [25,27,29,33]. The systems that can be encoded depend on the expressive
power of the logical framework. Linear logical frameworks, based on Linear
Logic [6], allow the encoding of, for example, stateful systems [22,33]. Logical
Frameworks with subexponentials allow the encoding of, for example, distributed
systems [25,27], authorization logics [22]. Ordered Logical Frameworks [29] allow
the specification of systems whose behavior respects some order, for example,
evaluation strategies.
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One key idea [2] of logical frameworks is to distinguish formulas according to
the structural rules (weakening, contraction and exchange rules) that are appli-
cable. For example, linear logical frameworks distinguish two types of formulas:
Unbounded Formulas which behave intuitionistically, that is, can be considered
as a set of formulas and Linear Formulas which behave linearly, that is, should
be considered as a multiset of formulas. Ordered logical frameworks also consider
Ordered Formulas which are non-commutative, that is, can be considered as a
list, not multiset, of formulas. This distinction is reflected in the syntax. Linear
logical frameworks have two contexts Θ : Γ , where Θ is a set of unbounded
formulas and Γ a multiset of linear1 formulas. Ordered linear logic, on the other
hand, has three contexts Θ : Γ : Δ where Δ is a list of ordered formulas.

Logical Frameworks with Subexponentials refine Linear Logical Frameworks
by distinguishing different types of unbounded and linear formulas. They work,
therefore, on sequents with multiple contexts. This increased expressiveness
allows for the specification of a greater number of proof systems [26] and dis-
tributed systems [27] when compared to logical frameworks without subexpo-
nentials. However, existing logical frameworks with subexponentials do not allow
ordered formulas.

Our main contribution is the logical framework SNILLF which has the follow-
ing two innovations:

1. Non-commutative Subexponentials: SNILLF allows both commutative
and non-commutative subexponentials [10]. This means that SNILLF works
not only with multiple contexts for unbounded and linear formulas, but also
multiple ordered contexts. As an illustration of the power of this system,
we encode a distributed system where machines have FIFO buffers storing
messages received from the network;

2. Proof Search with formulas that can contract, but not weaken: Moti-
vated by applications in type-logical grammar, where weakening of formulas is
not allowed, SNILLF allows formulas to be marked with subexponentials that
can contract, but not weaken. We classify such formulas as relevant. Relevant
formulas lead to complications for proof search because contracting a formula
implies that it should be necessarily used in the proof. Thus the contraction
of relevant formulas involves a “don’t know” non-determinism. This paper
investigates the proof theory of relevant formulas. We demonstrate that in
some situations it is safe (sound and complete) to consider relevant formu-
las as unbounded, that is, formulas that can both weaken and contract. We
illustrate the use relevant formulas by using SNILLF in type-logical grammar
applications.

In Sect. 2, we review the basic proof theory of non-commutative proof sys-
tems, namely Lambek Calculus, and subexponentials. Then in Sect. 3 we moti-
vate the use of non-commutatitive subexponentials and relevant formulas with
some concrete examples. Section 4 investigates the proof theory of relevant

1 Or affine which can be weakened.
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formulas. The Logical Framework SNILLF is introduced in Sect. 5 as a focused
proof system. We revisit our main examples in Sect. 6. Finally, we comment on
related and future work in Sects. 7 and 8.

2 Lambek Calculus with Subexponentials

While we assume some familiarity with Lambek Calculus [12], we review some
of its proof theory. Its rules are depicted in Fig. 1 contaning atomic formulas,
the unit constant 1, universal quantifier ∀, and binary connectives: · (product),
\ (left division) and / (right division). The formulas in the sequent should be
seen as lists, not multisets, of formulas. For example, the Γ, F1, F2,Δ−→G and
Γ, F2, F1,Δ−→G are not equivalent in general as there may be a proof for one,
but not for the other.

Fig. 1. Cut-free proof system Lambek proof system. Here {t/x} denotes the capture
avoiding substitution of x by t. Moreover, e is a fresh eigenvariable, that is, not appear-
ing in Π and F .

In our previous work [10], we proposed the proof system SNILLΣ (Subexpo-
nential Non-Commutative Intuitionistic Linear Logic)2 which extends proposi-
tional Lambek Calculus with subexponentials. Subexponentials derive from an
observation from Linear Logic [5,6,23]. Namely, the linear logic exponentials, !,
are non-canonical. That is, LL allows for an unbounded number of subexponen-
tials, !s, indexed by elements in a set of indexes s ∈ I.

Formally, SNILLΣ contains all rules in Fig. 1. Furthermore, it is parametrized
by a subexponential signature Σ = 〈I,�,W, C, E〉, where W, C, E ⊆ I and � is
a pre-order over the elements of I upwardly closed with respect to W, C, E , that
is, if s1 ∈ W and s1 � s2, then s2 ∈ W and similar for C, E . SNILLΣ contains the
following rules:

– For each s ∈ I, SNILLΣ contains the dereliction and promotion rules:

Γ1, F, Γ2 → G

Γ1, !sF, Γ2 → G
Der

!s1F1, . . . , !snFn−→F

!s1F1, . . . , !snFn−→!sF
!sR,provided, s � si, 1 ≤ i ≤ n

2 In that paper, the system was called SMALC.
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– For each w ∈ W and c ∈ C, SNILLΣ contains the rules:

Γ,Δ−→G

Γ, !wF,Δ−→G
W

Γ1, !cF,Δ, !cF, Γ2 → G

Γ1, !cF,Δ, Γ2 → G
C1

Γ1, !cF,Δ, !cF, Γ2 → G

Γ1,Δ, !cF, Γ2 → G
C2

– For each e ∈ E , SNILLΣ contains the rules:

Γ1,Δ, !eF, Γ2 → C

Γ1, !eF,Δ, Γ2 → C
E1

Γ1, !eF,Δ, Γ2 → C

Γ1,Δ, !eF, Γ2 → C
E2

Intuitively, the set I specifies the subexponential names, W the subexponentials
that are allowed to weaken, C the subexponentials that allow to contract, and E
the subexponentials that allow to exchange.

Notice additionally that contraction is non-local, that is, the contracted for-
mula can appear anywhere in left hand side of the premise.

In [10], we proved that the propositional fragment of SNILLΣ (with additive
connectives), admits cut-elimination. The following extends this result to first-
order SNILLΣ .

Theorem 1. For any subexponential signature Σ, SNILLΣ admits cut-
elimination.

The proof is essentially the same as in [10], since in the interesting cases a
formula of the form ∀x.F is never the active one, and the ∀ rules just permute
with the mix rule.

For our applications, we will consider subexponential signatures Σ = 〈I,�,
W, C, E〉 with the following restrictions:

W ⊆ E and C ⊆ E

That is, all subexponentials that can be weakened or contracted can also be
exchanged. This restriction on subexponentials will be used to establish con-
ditions for reducing “don’t know” non-determinism as we describe in Sect. 4.
Moreover, they are enough to specify our intended applications as described in
Sect. 6.

In the remainder of this paper, we will elide the subexponential signature Σ
whenever it is clear from the context.

Given the restriction above on subexponential signtures, we can classify for-
mulas of the form !sF according to the structural rules that are applicable to s:

– Linear Formulas: These formulas are not allowed to be contracted nor
weakened, that is, subexponentials s /∈ W ∪ C. Linear subexponentials range
over l, l1, l2, . . .. They can be commutative when l ∈ E or non-commutative
otherwise;

– Unbounded Formulas: These formulas can be both weakened and con-
tracted, that is, subexponentials s ∈ W ∩ C. Unbounded subexponentials
range over u, u1, u2, . . .. As W ⊆ E , these formulas are always commutative
that is u ∈ E ;



232 M. Kanovich et al.

– Affine Formulas: These formulas can only be weakened and not contracted,
that is, subexponentials s ∈ W and s /∈ C; Affine subexponentials range over
a, a1, a2, . . .. As W ⊆ E , these formulas are always commutative that is a ∈ E ;

– Relevant Formulas: These formulas cannot be weakened but can be con-
tracted, that is, subexponentials s ∈ C, s /∈ W. Relevant subexponentials
range over r, r1, r2, . . .. As C ⊆ E , these formulas are always commutative that
is r ∈ E .

Logical frameworks have been proposed with unbounded, linear and affine
formulas, but without relevant formulas. To illustrate the difficulty involving
relevant formulas, consider the following derivations with an instance of the dot
rule and contraction rules. In the derivation to the left, only the formula !uF is
contracted, while in the right the formula !rH is also contracted.

!uF, !rH,Γ−→G1 !uF,Δ−→G2

!uF, !rH,Γ, !uF,Δ−→G1 · G2

⊗R

!uF, !rH,Γ,Δ−→G1 · G2
C

!uF, !rH,Γ−→G1 !uF, !rH,Δ−→G2

!uF, !rH,Γ, !uF, !rH,Δ−→G1 · G2

⊗R

!uF, !rH,Γ,Δ−→G1 · G2
2 × C

As unbounded formulas can always be weakened, it is always safe to contract
them. If the contracted formula is needed then it can be used and if it turns
out not to be needed, the unbounded formula can be weakened before applying
the initial rule. Thus, a collection of unbounded formulas can be safely treated
as a set of formulas. This means that the non-determinism due to unbounded
formulas is a don’t care non-determinism.

The same is not the case for relevant formulas. As these formulas cannot be
weakened, provability may depend on whether one contracts a relevant formula
or not. For example, in the derivation to the right, the formula !rH has to be
necessarily used in both premises, while in the derivation to the left, the formula
!rH can only be used in the left premise. This means that the choice of contracting
a relevant formula or not involves a don’t know non-determinism.

3 Examples

We detail two different domain applications for which SNILLF can be applied.
The first is on the specification of distributed systems. The second is on type-
logical grammar.

3.1 Distributed Systems Semantics

Computer systems work with data structures which behave as sets, multisets and
as lists. As an example, consider a system with n machines called m1, . . . ,mn.
Assume that each machine has an input FIFO buffer. Whenever a machine
receives a message, it is stored at the beginning of the buffer, and the message
at the end of the buffer is processed first by a machine.

A buffer at machine mi with elements Γi is specified as the list of formulas
where start and end mark the start and end of the list [start, Γi, end]mi. Thus a
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system with n machines is specified as the collection of contexts of the form which
are associated to non-commutative subexponentials m1, . . . ,mn, respectively:

[start, Γ1, end]m1 [start, Γ2, end]m2 · · · [start, Γn, end]mn

As we describe in detail in Sect. 6, since these contexts behave as lists, the order
of the elements of the buffers allows to specify the correct FIFO behavior of such
buffers.

3.2 Type-Logical Grammar

The Lambek calculus was initially designed by Joachim Lambek [12] as a basic
logic in a framework for describing natural language syntax. The idea of such
frameworks goes back to works of Ajdukiewicz [1] and Bar-Hillel [3]; nowadays
formal grammars of such sort are called type-logical, or categorial grammars.

The idea of a type-logical grammar is simple: the central part of the grammar
is the lexicon, a finite binary correspondence � between words of the language
and formulae of the basic logic (such as Lambek Calculus). These formulae are
also called syntactic categories, or types. Thus, in this framework the grammar
is fully lexicalised, i.e., all syntactic information is kept in the types associated
to words, and one does not need to formulate “global” syntactic rules like “a
sentence is a combination of a noun phrase and a verb phrase.” The second
component of a type-logical grammar is the goal type. Usually it is a designated
variable (primitive type) S (meaning “sentence”).

A sentence w = a1 a2 . . . an is accepted by the grammar, if there exist
such formulae F1, F2, . . . , Fn that ai � Fi for 1 ≤ i ≤ n and the sequent
F1, F2, . . . , Fn → S is derivable. The language generated by the grammar is
defined as the set of all accepted sentences.

As shown by Pentus [28], grammars based on the Lambek calculus can gen-
erate only context-free languages. It is known, however, that certain natural
language structures are beyond the context-free formalism (as discussed, for
example, by Shieber [31] on Swiss German material). This also served as moti-
vation for extending the Lambek calculus with extra connectives, in particular,
subexponential modalities.

In order to show how a subexponential connective can be useful in type-
logical grammar, let us consider the following series of examples. The syntactic
analysis shown in these examples is due to Morrill and Valent́ın [19]. In our toy
grammar for a small fragment of English we associate the following types to
words:

John, Mary � N (noun phrase)
loves, signed � N \ S / N (transitive verb)

girl, paper � CN (common noun)
the � N / CN (article: transforms a common noun into a noun phrase)

without � (N \ S) \(N \ S) / GC
reading � GC / N (“reading the paper” is a gerund clause, GC)

that, whom � (CN \ CN) /(S / !sN) (dependent clause coordinator)
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The simplest example, “John loves Mary,” is justified as a correct sentence
(of type S) by the following derivation in Lambek calculus:

N → N
N → N S → S

N,N \ S → S

N,N \ S / N,N → S

There are more sophisticated syntactic constructions for which the contrac-
tion rule is used. First consider the following sentence: “John signed the paper
without reading it” (of type S), supported by the following Lambek derivation:

CN → CN

N → N

GC / N,N → GC N,N \ S, (N \ S) \(N \ S) → S

N,N \ S, (N \ S) \(N \ S) /GC,GC /N,N → S

N,N \ S / N,N, (N \ S) \(N \ S) /GC,GC /N,N → S

N,N \S / N,N / CN,CN, (N \ S) \(N \ S) /GC,GC /N,N → S

Now let us transform this sentence into a dependent clause: “the paper that
John signed without reading” (this phrase should be of type N , noun phrase).
Notice that here we removed not only “the paper,” but also “it,” forming two
gaps which should be filled with the same !sN . This phenomenon is called para-
sitic extraction and can be handled using dereliction, exchange and contraction:

N,N \ S / N,N, (N \ S) \(N \ S) / GC,GC / N, N → S

N,N \ S / N, !sN, (N \ S) \(N \ S) / GC,GC / N, !sN → S
Der

N,N \ S / N, (N \S) \(N \ S) / GC,GC / N, !sN → S
CL

N,N \ S / N, (N \ S) \(N \ S) / GC,GC / N → S / !sN N / CN,CN,CN \ CN → N

N / CN,CN, (CN \ CN) /(S / !sN), N,N \ S / N, (N \ S) \(N \ S) / GC,GC / N → N

Contraction can be used several times, generating examples like “the paper
that the editor of received, but left in the office without reading.”

Finally, the last example shows that weakening should not be allowed. Con-
sider “the girl whom John loves Mary.” This should not be a legal noun phrase,
but can be derived using weakening:

N, N \ S / N, N → S

N, N \ S / N, N, !sN → S
WL

N, N \ S / N, N → S / !sN N / CN, CN, CN \ CN → N

N / CN, CN, (CN \ CN) /(S / !sN), N, N \ S / N, N → N

Thus, the subexponential used for type-logical grammar is a relevant one; in
other words, s ∈ E , s ∈ C, s /∈ W.

4 Treating Relevant Formulas as Unbounded Formulas

Given that contraction of relevant formulas involves “don’t know non-
determinism”, during proof search, we would like to postpone (from a bottom-up
perspective) as much as possible the application of contraction of relevant formu-
las. The following lemma provides us with insight on which rules are problematic:
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Lemma 1. Contraction rules permute over all rules except rules ·R, \L, /L and
Der.

For proof search, this means that for rules R other than ·R, \L, /L and Der, it is
safe to not contract relevant formulas. This is because from the lemma above, if
there is a proof where a formula is contracted before the application of R, then
there is also a proof where the formula is contracted after R.

However, the same is not the case for ·R, \L, /L and Der. For example, it is
not possible to permute contraction over \L in the following derivation as the
occurrences of !rF are split among the premises:

Π1, !rF,Π2−→F1 Γ1, !rF, Γ2, F2, Γ3−→G

Γ1, !rF, Γ2,Π1, !rF,Π2, F1\F2, Γ3−→G
\L

Γ1, Γ2,Π1, !rF,Π2, F1\F2, Γ3−→G
CL

We analyse the rules ·R, \L, /L and Der individually and investigate how to
reduce don’t know non-determinism.

Consider the following derivation to the left containing an instance of ·R rule
where r is a relevant formula and the relevant formula !rH is moved to the right
premise. The symmetric reasoning applies if !rH is moved to the left premise.

Γ1 → F Γ2, !rH,Γ3 → G

Γ1, Γ2, !rH,Γ3 → F · G
·R

Γ ′
1 → F Γ2, !rH,Γ3 → G

Γ ′
1, Γ2, !rH,Γ3 → F · G

·R

Γ1, Γ2, !rH,Γ3 → F · G
n × CL

As !rH cannot be weakened, it should be necessarily used in the right premise.
That is, it behaves as a linear formula. How about the left premise? Since con-
traction is not local, it is possible to contract !rH as many times such that the
contracted formulas are moved to the left premise. This means that during proof
search, it is safe to consider the formula H unbounded in the left premise. If n
copies of H are used in the proof of the left premise, where n ≥ 0, we can con-
tract it as illustrated by the derivation above to the right where Γ ′

1 contains the
contracted occurrences of the formula !rH.

Similarly, consider the following instance of \L to the left where the relevant
formula !rH is moved to the left premise. A symmetric observation can be carried
out for /L.

Π1, !rH,Π2 → F Γ1, G, Γ2 → C

Γ1,Π1, !rH,Π2F \ G,Γ2 → C
\L

Π1, !rH,Π2,→ F Γ ′
1, G, Γ ′

2 → C

Γ ′
1,Π1, !rH,Π2, F \ G,Γ ′

2 → C
\L

Γ1,Π1, !rH,Π2, F \ G,Γ2 → C
n × CL

As before, since !rH cannot be weakened, it should be necessarily used in the left
premise. That is, it behaves like a linear non-commutative formula. By similar
reasoning as for ·, we can treat this formula as unbounded in the right premise.
Since contractions are non-local, we can copy !rH so that they are moved to the
right premise as illustrated by the derivation above to the right where Γ ′

1, Γ
′
2

contain the contracted occurrences of the formula !rH.
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The same reasoning applies for relevant formulas moved to the right premise.
It is safe to consider the formula H as unbounded in the left premise.

The leads to the our first key observation:

Key Observation 1: During proof search, any relevant formula moved to one
premise of ·R, \L, /L can be considered unbounded in the other premise.

Finally, consider the following instance of DerL on a relevant formula:

Γ1,H, Γ2−→G

Γ1, !rH,Γ2−→G
Der

Applying the same reasoning as above, the formula !rH can be treated as
unbounded as one can make as many copies as needed before the dereliction.
This leads to the following key observation:

Key Observation 2: During proof search, any relevant formula derelicted by
Der can be considered unbounded in its premise.

Example 1. Consider the derivation below left with the relevant formula !rA:

!rA−→A
Der, I

A′−→A · A′ · A

!rA, A \ A′−→A · A′ · A
\L

!rA−→A
Der, I

!rA, A′−→A · A′ · A

!rA, A \ A′−→A · A′ · A
\L

Following the Key Observation 1 above, as !rA is moved to the left premise, we
can treat !rA as unbounded in the right premise. This is denoted by the formula
!rA as shown in the derivation to the right. We can now prove the right premise
using !rA as illustrated by the derivation Ξ below. (Recall unbounded formulas
can be contracted safely):

Ξ =

!rA−→A
Der, I A′−→A′ I

!rA,A′−→A′ WL !rA−→A
Der, I

!rA,A′−→A · A′ · A
2 × ·R

Notice that it may seem unsound to weaken !rA in the middle branch. How-
ever, as we can control the number of times !rA is contracted, we can transform
this derivation into a SNILL proof: In particular, we can infer from Ξ that we
require two copies of !rA. Thus the corresponding SNILL proof starts with two
contractions:

!rA−→A
Der, I

!rA,A′, !rA−→A · A′ · A

!rA, !rA,A \ A′, !rA−→A · A′ · A
\L

!rA,A \ A′−→A · A′ · A
2 × CL

It remains to construct a proof based on Ξ.
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Example 2. Given that we allow non-local contractions, one could expect that
Key Observation 1 would also work for non-commutative relevant subexponen-
tials s such that s ∈ C and s /∈ E ∪ W. However this is not true in general.
Consider the following derivation where we attempt to use Key Observation 1,
that is, where !sA is treated as an unbounded formula:

!sA−→A

!sA,A1, A2−→A1 · A · A2

!sA,A1 · A2−→A1 · A · A2

!sA−→(A1 · A2 /A1 · A · A2)
!sA−→A · (A1 · A2 / A1 · A · A2)

In the open premise, it would be tempting to move !sA to the place between
A1 and A2 and finish the “proof”. However, the resulting derivation would not
correspond to a valid SNILL proof as it is not possible to contract the original
!sA so that it is placed exactly between A1 and A2. While we conjecture that
this could be solved by also recalling the places where relevant formulas can
be contracted, we leave this investigation for future work. Moreover, such non-
commutative relevant formulas are not needed for our applications here.

5 Focused Proof System for SNILL

Logical frameworks are defined proof theoretically by a focused proof system.
This section introduces the focused proof system SNILLF for SNILL. We prove
that SNILLF is sound and complete with respect to SNILL.

First proposed by Andreoli [2] for Linear Logic, focused proof systems
reduce proof search space by distinguishing rules which have don’t know non-
determinism, classified as positive, from rules which have don’t care non-
determinism, classified as negative. For SNILL, the rules ·R, \L, /L,∀L are positive
rules and the rules ·L, \R, /R,∀R are negative. Formulas of the form F · G and
!sF and 1 are classified as positive while the remaining formulas as negative.

SNILLF sequents are constructed using the following four types of contexts:

– Commutative Contexts (K): A commutative context K maps a commu-
tative subexponentials s ∈ E to a set of formulas if s ∈ W ∩ C, that is, it is
unbounded, and to a multiset of formula otherwise. Intutively, such a context
K denotes the formulas: K[s1],K[s2], . . . ,K[sn] where {s1, . . . , sn} = E ;

– Unrestricted Relevant Context (Ru): An unrestricted context Ru maps
relevant subexponentials r ∈ C and r /∈ W to sets of formulas. Intuitively,
this context stores the relevant formulas which can be treated as unbounded.
Using the notation in Sect. 4, Ru represents the formulas Ru[r1], . . . ,Ru[rn],
where {r1, . . . , rn} is the set of all relevant subexponentials;

– Subexponential Boxes: [F1, . . . , Fk]s where s /∈ E and F1, . . . , Fk is a list,
not a multiset, of formulas. This box should be interpreted as the list of
formulas !sF1, . . . , !sFk;
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– Unmarked Boxes: [F1, . . . , Fk ⇑ G1, . . . , Gm], where F1, . . . , Fk and
G1, . . . , Gm are both lists, not multisets, of formulas. This box should be
interpreted as the list of formulas F1, . . . , Fk, G1, . . . , Gm. When m = 0, we
write such box as [F1, . . . , Fk]�.

We use NC and its variants to denote a sequence of boxed formulas (Subexponen-
tial Boxes and Unmarked Boxes). We write NC� whenever all unmarked boxes
are of the form [F1, . . . , Fk]�. We define the set NC[s] = {F | [Γ1, F, Γ2]s ∈ NC}.
Also, if NC1 = [Γ1]s1 · · · [Γ ]si and NC2 = [Δ]si · · · [Γ ]sn , then NC1·NC2 is defined
to be [Γ1]s1 · · · [Γi,Δ]si · · · [Γn]sn . Empty boxes [·]s, [·]� are always elided. These
also act as identity elements, that is [F1, . . . , Fn]s · []s = [F1, . . . , Fn]s and sim-
ilarly for unmarked boxes. Finally, we define the following auxiliary operations
on commutative contexts:

K[S] =
⋃

s∈S K[s] (K +s F )[s′] =
{K[s′] � {F} if s′ = s

K[s′] otherwise

(K1⊗K2)[s] =
{K1[s] � K2[s] if s /∈ W ∩ C

K1[s] otherwise K ≤s=
{K[s1] if s � s1

∅ otherwise

(K1 � K2) |S is true if and only if for all s ∈ S,K1[s] � K2[s], for � ∈ {⊂,⊆,=}
Similar operations are also defined (mutatis mutandis) for Unrestricted Relevant
Contexts (Ru). These operations are similar to the ones proposed in [23] used
in the formalization of the side conditions of the rules for proof systems with
subexponentials.

The rules for the focused proof system SNILLF for SNILL are depicted in
Fig. 2. They contain the following types of sequents:

– Negative: K : Ru : NC1, [Δ ⇑ Γ ],NC2−→G and K : Ru : NC−→[⇑ F ]. Here
G can be either [⇑ F ] or [F ]. Moreover, Γ,Δ are lists of formulas.

– Positive: K : Ru : NC�−→[⇓ F ] and K : Ru : NC�
1 [⇓ F ] NC�

2−→[G]s. In
the former, the formula F on the r.h.s. is focused on and the latter on the
l.h.s.;

– Decision: K : Ru : NC�−→[G]: Sequents at the border of negative and
positive phases.

During the negative phase, formulas (Δ) to the right of Unmarked Boxes
([Γ ⇑ Δ]) are introduced or moved to the left (Γ ) or to other contexts using the
Reaction rules ⇑L,⇑R. Notice the negative rule !ne. There since the formulas Δ
are all not marked with subexponentials, the rule creates a new box [Δ]�.

Once a negative phase ends, that is, all unmarked boxes are of the form
[Γ ]�, one should decide in a formula to focus on using one of the Decide Rules.
Decide rules implicitly apply the Dereliction rule whenever applicable. The rules
Du,Dnc,Dr choose a formula marked with a subexponential for which exchange
rule applies. Therefore, one can place F any where in the context. This Dnc

which forces the formula F to be where it is. It also causes the box where the
formula is to be split. Finally, notice that if an unbounded formula is focused
on then it is contracted (as in Andreoli’s original system). Moreover following
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Fig. 2. SNILLF: focused proof system for SNILL. Here P is a positive formula; Na is a
negative or atomic formula; Pa is a positive or atomic formula; e is a fresh eigenvariable,
not appearing in K, Ru, NC, F ; e ∈ E ; ne /∈ E ; u ∈ W ∩ C ∩ E ; nc /∈ C; r ∈ C and r /∈ W.
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Key Observation 2 described Sect. 4, whenever a relevant formula is added to
the context Ru and is treated as an unbouded formula.

In the positive phase, one can only introduce the formula that is focused on.
The rules \L, /L, ·R implement the Key Observation 1 described in Sect. 4. That
is, all relevant formula moved to one premise are added to the Ru context of
the other premise and treated as unbounded formulas in that premise. This is
specified by the side conditions of that rule.

For soundness of SNILLF with respect to SNILL, we rely on the transforma-
tions described in Sect. 4, namely, that is sound to consider relevant formulas
as unbounded in some premises. Given this result, soundness just amounts to
erasing the focusing annotations and replacing contexts by formulas. For com-
pleteness of focusing, we use the modular technique proposed in [14] based on
the following permutation lemmas. Lemma 2 justifies the eager application of
negative rules (negative phase). Lemma 3 justifies the preservation of focusing
in the positive phase.

Lemma 2. All positive rules permute over all negative rules.

Lemma 3. All positive rules permute over all positive rules.

Theorem 2. Let Σ = 〈I,�,W, C, E〉 be a subexponential signature with C,W ⊆
E. Let K∅ and Ru

∅ be the empty contexts, that is, K[s] = Ru[s] = ∅ for all s. For
any subexponential signature, the sequent Γ−→G is provable in SNILLΣ if and
only if the sequent K∅ : Ru

∅ : [· ⇑ Γ ]−→[⇑ G] is provable in SNILLFΣ.

6 Applications

We illustrate the power of SNILLF by revisiting the examples described in Sect. 3.

6.1 Distributed Systems

Assume a subexponential signature Σ = 〈I,�,W, C, E〉 where I =
{u,N,m1, . . . ,mn}, � is the reflexive relation, that is i � j, then i = j, E = {u,N}
and C = W = {u}. Intuitively, we use the subexponential mi to specify machine
mi’s buffer, N to specify the messages sent on the network and u to specify
the behavior of the system. Notice that as there are no relevant formulas Ru is
always empty and therefore elided.

A buffer at machine mi with elements Γi is specified as the list of formulas
where start and end mark the start and end of the list [start, Γi, end]mi. Thus a
system with n machines is specified as the collection of formulas:

NC = [start, Γ1, end]m1 [start, Γ2, end]m2 · · · [start, Γn, end]mn

For a better presentation, instead of using the context K, we show the formulas
in the sequent explicitly where K[u] = U and K[N] = N :

U : N : NC−→G
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Notice that since buffers are lists of formulas, we use non-commutative subex-
ponentials to specify them. However, messages on the network are not necessarily
delivered in a particular order. Moreover, messages should be consumed exactly
once. Therefore, we use the commutative subexponential N to mark these mes-
sages.

We now describe how to specify the transmission of messages between
machines. For our example, assume two collections of messages synmj, ackmj spec-
ifying, respectively, a synchronization message from mj and an acknowledgement
message to mj. Whenever a machine mi processes the message synmj, it sends the
message ackmj to mj.

The following two clauses specifies this behavior:

Deq(i, j) = !misynmj · !miend \ !miend · !N ackmj

Enq(i, j) = !mjstart · !mjackmj / !Nackmj · !mjstart

Deq(i, j) specifies the processing of synmj sending ackmj to the network and
Enq(i, j) the receival of ackmj.

The correctness of this encoding can be easily visualized using focusing. Con-
sider two machines 1, 2. The focused derivation introducing Deq = Deq(1, 2)
is necessarily of the following form where M2 = [start, Γ2, end]m2 and Θ =
Deq(1, 2),Enq(1, 2):

Θ : · : [synm2, end]m1−→[⇓ !m1synm2 · !m1end]

Θ : N , ackm2 : [start, Γ1, end]m1 M2−→[G]

Θ : N : [start, Γ1]m1, [⇑ !m1end · !N ackm2] M2−→[G]

Θ : N : [start, Γ1]m1, [⇓ !m1end · !N ackm2] M2−→[G]
Θ : N : [start, Γ1, synm2, end]m1, [⇓ Deq] M2−→[G]

Θ : N : [start, Γ1, synm2, end]m1,M2−→[G]

Notice that the messages in the network N are necessarily moved to the
right premise, i.e., no message is lost. Otherwise, the introduction of !m1 to the
left would fail since N does not allow weakening and m1 � N. Moreover, notice
that Deq can only be focused on at the location shown above (to the left of
M2). Otherwise, the formula !m1end would not be provable: if it is focused not
adjacent to a end atom then it would not be provable, and if it is focused to the
right of M2, then one could not introduce !m1. Finally, the message synm2 should
necessarily appear at the end m1’s buffer.

A similar exercise can be carried out when focusing on Enq = Enq(1, 2). In
this case, the message ackm2 should be necessarily in N and moreover, an element
is added to the beginning of the buffer of m2. The corresponding derivation is
elided.

6.2 Type-Logical Grammar

We return to the sentence “the paper that John signed without read-
ing” described in Sect. 3. The focused proof system SNILLF consider-
ably reduces the proof search space for validating this sentence. Assume



242 M. Kanovich et al.

just a single relevant subexponential r. The corresponding focused proof
is as follows where Γ = CN, (CN \ CN) /(S / !rN), Γ1 and Γ1 =
N,N \ S / N, (N \ S) \(N \ S) / GC,GC / N . Moreover, we write explicitly the
elements of K and Ru as in the previous section.

· : · : [⇓ N ] → [N ] I

· : · : [Γ1]� → [⇓ S / !rN ] · : · : [CN ]� [⇓ CN \ CN)] → [CN ]
· : · : [CN ]� [⇓ (CN \ CN) /(S / !sN)] [Γ1]� → [CN ]

/L

· : · : [Γ ]� → [CN ]
DL

· : · : [⇓ N \ CN ] [Γ ]� → [N ]
/L

· : · : [⇑ N \ CN,Γ ] → [N ]
7× ⇑L,DL

Continuing the left premise, we obtain the following derivation, we release
focus and apply /R. At this point, the relevant formula !rN is moved to the
commutative context:

N : · : [GC / N ] → [GC]

· : N : [N \ S / N ]� → [⇓ (N \ S)] · : N : [N ]�[⇓ N \ S] → [S]

· : N : [N,N \S / N ]� [⇓ (N \ S) \(N \ S)] → [S]
2 × /L

N : · : [N,N \ S / N ]� [⇓ (N \ S) \(N \ S) / GC] [GC / N ]� → [S]
N : · : [Γ1]� → [S]

DL

· : · : [Γ1]� [⇑ !rN ] → [S]
!rL

When compared to the derivation in Sect. 3, focusing reduces proof search in
two different ways. First, the proof follows a “back-chaining” strategy [8]. This
means that one decides on a formula that can immediately prove the goal. For
example, decide on the formula N \ GC. Search fails immediately if one decides
on other formulas. The second way is on deciding when to contract the formula
!rN . Indeed, in the derivation above, when the formula N is moved to the left-
most branch, it is treated as unbounded in the remaining two branches. This
means that one can freely use it as in the middle branch or not as in the right
branch.

7 Related Work

Logical Frameworks. When compared to existing logical frameworks, SNILLF
has an increased expressiveness. When compared to Intuitionistic Linear Logical
(ILL) Frameworks [8,33], SNILLF also allows ordered and relevant formulas. It
also seem possible to encode Ordered Logical Frameworks [29,30] in SNILLF. In
particular, one should only consider three subexponentials, one unbounded, one
linear (or affine) and another non-commutative. The resulting system behaves
similarly to Ordered Logical Frameworks. Moreover, ILL frameworks with subex-
ponentials do not consider relevant formulas. It seems possible to apply the ideas
here for reducing “don’t know non-determinism” in the same way as done here. A
proof of the focusing completeness theorem for the ordered logic [29] is detailed
in the technical report [32]. We believe that work could also be extended to prove
the completeness of SNILLF.
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Finally, as SNILLF is intuitionistic, it cannot be directly compared to classical
logical frameworks such as Forum [13] and Classical Linear Logic with Subex-
ponentials [21]. We leave the proposal of a classical version of SNILLF to future
work.

Type-Logical Grammar. A structural modality closely related to the relevant
subexponential discussed above is used in the CatLog theorem prover and type-
logical grammar parser, which is an ongoing project of Glyn Morrill and his group
in Barcelona [17,18]. The difference of the calculus used in CatLog in comparison
to our system is the use of bracket modalities that introduce controlled non-
associativity and also interact with the relevant subexponential in a non-trivial
fashion (see [19] for more details). Bracket modalities are used to block unwanted
derivations like “the girl whom John loves Mary and Pete loves” or “the paper
that John signed the article without reading.” (Both examples are incorrect from
the point of view of English grammar, but accepted by the grammar discussed
above.) As shown by Kanovich et al. [9], the derivability problem for the Lambek
calculus with bracket and subexponential modalities is undecidable. There exists,
however, a natural decidable fragment, which is actually used in CatLog. This
fragment belongs to the NP class, and CatLog utilises several techniques and
heuristics in order to speed-up the parsing procedure. In particular, it uses count-
invariants for pruning proof search [11] (which generalise multiplicative count-
invariants by van Benthem [4]) and focusing for reducing spurious ambiguity. For
the multiplicative-additive fragment focusing for the system used in CatLog is
discussed in detail in [20]; completeness of focusing for the full set of connectives
used in CatLog, including subexponential, is left by Morrill as a topic for further
research [18].

There also exist other type-logical grammar frameworks based on different
variants of the Lambek calculus. A notable one is the Grail system developed by
Moot [16] on the basis of Moortgat’s multi-modal extension of the non-associative
Lambek calculus [15]. Like the subexponential extension of the Lambek calculus
discussed in this paper, Moortgat’s system uses an indexed family of structural
connectives.

8 Conclusions

This paper introduced the logical framework SNILLF which allows for both com-
mutative and non-commutative subexponentials. We demonstrate the power of
SNILLF by specifying the structural semantics of distributed systems with buffers
and specifying type-logical grammars. For the latter, SNILLF uses commutative
relevant formulas, that is, formulas !sF that can contract, but not weaken. We
investigate the proof theory of such formulas in order to reduce “don’t know non-
determinism” involved demonstrating that under some conditions, these formu-
las can be treated as unbouded. We believe that this paper lays the foundations
for the development of concrete systems for, e.g., type-logical grammars.
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We are currently investigating a number of future work directions. We intend
to investigate through prototype implementations the impact of SNILLF for cat-
egorial parsers. Such an implementation will help us investigate possible further
uses of subexponentials for capturing other grammatical constructions. From the
proof theory, we are investigating how to reduce the “don’t know non-determism”
of non-commutative relevant formulas. We are also investigating classical ver-
sions for SNILLF following our previous work [10].
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